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Summary. Selection experiments can provide informa- 
tion on genetic parameters such as realized heritability 
and response to selection. Often, due to lack of ade- 
quate replication, empirical sampling variances of  
estimated response cannot be computed and therefore 
use must be made of theoretical formulae. Most of  the 
variance between a conceptually large number of 
selected lines drawn from the same base population is 
contributed by genetic drift, which depends on the 
population structure and can therefore be predicted 
before the experiment is carried out. The theory of 
variation of response to selection has been developed 
mainly by Hill, who produced formulae to adjust the 
variance of estimators to take account of genetic drift. 
In this paper, we draw attention to properties of  the 
additive genetic relationship matrix that lead to well 
established results in population genetics theory. We 
show how inclusion of the additive genetic relationship 
matrix among the observations leads to sampling vari- 
ances of estimators of genetic means that account for 
the variance due to genetic drift. 
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Introduction 

The results of selection experiments are often used to 
obtain estimators of realized heritabilities and related 
parameters, such as genetic means and response per 
generation. When inferences are to be made from one 
line to the behaviour of a conceptually large number of 
similarly selected lines drawn at random from the same 
base population, the variance of the various estimators 

must take account the correlated structure among the 
observations. Failure to do this will result in sampling 
variances which can be severely biased downwards, as 
shown by Hill (197t). 

The genetic nature of the correlated error structure 
is due to genetic drift. In random mating populations, 
the process of genetic drift is well understood. Gene 
frequency changes due to drift in different generations 
are independent, but cumulative drift in a particular 
generation is the result of  the sum of random devia- 
tions in all previous generations. Hence, the variance of 
the genetic mean increases each generation and means 
of different generations become correlated. 

Variation between means of directionally selected 
lines is less well understood; the problem has been 
recently discussed by Hill (1977). Relative to unselect- 
ed lines with the same effective number of  males and 
females used as parents each generation, selection leads 
to the following phenomena. Firstly, selected individu- 
als tend to be genetically more alike than randomly 
chosen ones and this effect will tend to reduce the vari- 
ance of response. Secondly, the within-line genetic 
variance differs between lines due to finite population 
size (Avery and Hill 1977) and results in real differ- 
ences in response in different lines. This effect will tend 
to increase the variance between lines. Finally, direc- 
tional selection causes changes in gene frequency and 
negative covariances of  gene frequencies in gametes, 
i.e. negative linkage disequilibrium. The latter leads to 
a reduction in the additive genetic variance within 
lines (Bulmer 1971) and this will decrease variance 
between lines. Changes in gene frequency can have an 
effect on drift variance in either direction, depending 
upon the initial distribution of gene effects and fre- 
quencies. All these phenomena have opposing effects 
on the variance of selection response and a simple 
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operational compromise is to assume that they cancel 
each other out approximately. Thus, Robertson (1977) 
found that, up to inbreeding coefficients of  0.50, the 
simple formula for the drift variance in unselected 
lines gave a reasonable fit to his Monte Carlo selected 
lines under a genetic model that assumes an infinite 
number of  loci. 

In any one replicate, the effect of  drift on the 
genetic mean cannot be predicted but the magnitude of  
variance between lines due to genetic drift can be 
quantified before the experiment is carried out from 
knowledge of  the population structure. Hill (1971) used 
essentially this a priori approach to develop formulae 
to adjust the variance of  various genetic parameter 
estimators. Alternatively, if the selection experiment 
has been conducted and pedigrees have been kept, the 
correlated structure among the records can be ade- 
quately described by means of  the numerator rela- 
tionship matrix. The purpose of  this paper is to show 
how inclusion of  the matrix of  additive genetic rela- 
tionships among individuals in the computat ion of  
sampling variances of  estimates of  genetic means ac- 
counts for variance due to genetic drift. 

We assume for simplicity that the only source con- 
tributing to the correlation among the observations is 
their additive genetic relationship and in this paper we 
ignore complications associated with changes of  within 
line genetic variance due to selection, though this 
problem needs to be studied further. 

The relationship matrix 

The relationship matrix for a group of  animals is 
defined as the matrix with the i j th off-diagonal ele- 
ment equal to the numerator of  Wright's (1922) coeffi- 
cient of  relationship of  the i th and jth animals and with 
the i th diagonal element equal to 1 + Fi,  where Fi is the 
coefficient of  inbreeding of  the i th animal. 

Consider the following model:  

Yij = mi + gij +eij (1) 

i = 0  . . . . .  t; j - -1  . . . . .  M; T = t  M, where Yij is the 
record on the ij th individual, mi is the mean additive 
genetic value of  the i th generation, gij is the additive 
genetic value of  the jth individual in the i th generation 
and eij is its environmental  effect. In matrix notation, 
we write (1) as 

y = X b + Z n + e  (2) 

where y is the vector o f  T observations, b is the vec- 
tor of  generation effects, u is the vector of  random 
additive genetic values, 8 is the vector of  random envi- 
ronmental values and X and Z are incidence matrices. - 
For purposes o f  computat ion we treat b as fixed and 

assume that E (y) = X b and 

2 Var (y) = V = Z A Z '  a 2 + I a,: (3) 

where a 2 and a~ are the additive genetic and environ- 
mental variances respectively in the base population, I 
is the identity matrix and A is the additive genetic rela- 
tionship matrix each of  order TxT.  With one record 
per individual, Z in (2) is equal to I. 

The T observations have been generated as follows. 
At generation 0, M/2 males and M/2 females, mutually 
unrelated, are sampled from a base population in 
Hardy-Weinberg and linkage equilibrium. From these 
M individuals, Nm males and Nf  females ( N = N m  
+ Nf) are randomly chosen and mated to produce M/2 
males and M/2 females of  generation 1. This procedure 
is followed for t generations so that a total of  T ob- 
servations are available. 

If the correlated structure among the observations is 
not taken into account, and the vector of  random ef- 
fects, u, in (2) is ignored, such that Var (y) is incor- 
rectly assumed to be I a 2, where a2 is the phenotypic 
variance, the usual least squares estimator of  b in (2) is 

f~= (X'X)-I X 'y  = y (4) 

where y is the vector of  order t +  1 of  raw generation 
M 

means. The i th element in y is: ~i. = ~ yi /M. 
j=l 

in (4) is an unbiased estimator of  b, and its cor- 
rect sampling variance, given the assumptions of  the 
model specified in (3), is: 

2 Var (b) = (X'X)-I  X' Z A Z '  X (X'X)-I  a~ + (X'X)-1 a,  

(5) 
l fioo fi0I 

= tg.lo, a,/i 
\a-to ~ti 

.~ot\ 

att / 

~ + I a~/M (6) 

where aij is the average additive relationship between 
the M individuals of  generation i and the M of  genera- 
tion j (i = 0, . . . ,  t; j = 0 . . . . .  t) relative to the base 
population. Hence, at generation zero, the variance of  
the least squares estimator of  m0 in (i) is 

Var (90) = aoo a 2 + a2/M = h2 cr2/M + 0-2 ( 1 - -  h2) /M = o'2/M 

where  h 2 and a 2 are the heritability and phenotypic 
variance respectively. Also, when h 2 --- 0, (5) reduces to 
(X 'X) - t a  2, the usual variance of  the least squares 
estimator. 

We now define a matrix P of  order M x M  which 
describes the flow of  genes from individuals of  genera- 
tion i to those of  generation i + 1. Matrices of  this type 
were introduced into population genetics by Hill (1972, 
1974). We can partition P into blocks which correspond 
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to the pathways of genes: 

males (i) to males (i) to ) 
(i + 1) females (i + 1) 

males (i) to females (i) to 
males (i + 1) females (i + 1) 

where rows correspond to parents in generation i and 
columns to progeny in generation i + 1. The elements of 
P are defined as the proportion of genes in animals 
at time i+  1 coming from animals at time i. Because 
each individual receives one gamete from each parent, 
the elements of each column of P add to one. In our 
model of non-overlapping generations, elements of  P 
are either 0 or 1/2. 

Let Pi denote the matrix relating individuals of 
generation i to those of generation i +  I. Then the 
matrix of additive genetic relationships among indi- 
viduals of generation i and j + I, Ai(j+l) , c an  be re- 
presented by (Thompson 1977) 

Ai(j+l)=AijPi ( i - j ) .  

It can be verified that the sum of the M 2 elements in 
&0+l) is equal to the sum of M 2 elements in 
Aii (0 _-< j - t; i - j). Hence it follows that the variance 
of the least squares estimator of generation means is :  

Var (b )=  a0 al. ~l a 2 + i 0 - 2 / M  (7) 

0 a! 

where ~,i is the average relationship among the M indi- 
viduals of generation i including relationship to self 
(i = 0 . . . . .  t). 

Consider the submatrix of the additive relationship 
matrix A, corresponding to the relationship among the 
M individuals of a particular generation, i, say. We 
denoted this by Aii. We partition Aii into 4 blocks, 
corresponding to the relationship between males and 
males, (m m),  males and females (m f) and so on. 
Averaging within blocks, we can write (dropping the 
subscript i): 

( 8-mm 8-rnf I w i t h  - art and g_mf = arm 
a-fro O*ff ]2x2'  amm = 

For any generation, i, say 
1 

ai = 7 (8-ram + ~-mf) ; (i = 0 . . . . .  t) (8) 

In the block associated with amm, the k th diagonal 
element is 1 + F k whereas the corresponding element in 
the block associated with ftrnf is, for the family structure 
we have assumed, the additive relationship between 
full-sibs in an inbred population which has expectation 
1/2 (1 + F i - i  + 2 F'i). Hence we can write, 

arnm = amr+ (1 -- F'i-l)/M 

where Fi is the average inbreeding coefficient in the i tu 
generation. Substituting in (8): 

a~ = O-mf"~- (1 -- Pi-I) /2 M.  (9) 

Since the Nm males and Nf  females are chosen at 
random, the average relationship between them is 
equal to ~mr. Further since the average relationship 
between parents is equal to twice the inbreeding coeffi- 
cient of their offspring, from (7), the variance of the 
least squares estimator of  the i th element (generation 
mean) in [~ is: 

Var ff/i.) = C o v  (Yi., "2j.) = a.i a 2 + a~/M (i < j) (10) 

= 2 Fi+t 0-2 + (1/2 (1 - ]~ i - l )  0-2 + 0-Z,)/M (11) 

which reduces to 0-2/M with h 2 = 0. 
The first term in (11) is the variance due to drift, 

which accumulates each generation, and the second 
term is the error variance due to sampling a finite 
number (M) of offspring from N parents and it also 
includes the environmental variance. The error vari- 
ance does not accumulate. 

The term in (1 - Pi- i)  reflects the decline in within 
line genetic variance as inbreeding accumulates each 
generation. Expression (11) is equivalent to Hill's 
(1977) expression (5) though he chose to ignore the 
decline in within line genetic variance because it is 
small relative to changes due to drift. If  an infinite 
number of progeny are produced expression (11) re- 
duces to 2 F i + 1 o 2, which is the standard formula 
for the variance of the mean breeding value of N 
parents when the population mean is known (Falconer 
1981). 

C o n c l u s i o n s  

The phenomenon of genetic drift is simply a genetic 
interpretation of the correlated structure among the ob- 
servations and this is adequately taken into considera- 
tion by means of the relationship matrix. Non-genetic 
sources of correlation in the data can easily be allowed 
for by appropriate definition of the variance-covari- 
ance matrix of the environmental effects in the model. 

The use of the relationship matrix, being essentially 
a retrospective approach accounts for the reduction in 
effective population size due to selection (Robertson 
1961) with associated increase in drift variance. To 
arrive at the expression for the variance due to drift in 
(11) we had to assume a given family structure. It 
should be clear, however, that expression (5) is perfect- 
ly general and can be used regardless of the distribu- 
tion of family size. 

Although the relationship matrix can be useful in 
estimating the variance of the least squares estimator 
of genetic means, the least squares estimator, although 
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computationally simple, can be biased under  certain 
circumstances. A general discussion of problems asso- 
ciated with the estimation of genetic trend shall be the 
subject of a future paper. 
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